A Parametric Two-Dimensional Random Field with Markov Properties and Variable Structure ⋆

نویسندگان

  • Jiazheng Shi
  • Stephen E. Reichenbach
چکیده

This paper presents a parametric, two-dimensional random field with Markov properties and variable structure that is useful for statistically modeling ensembles of images and for generating pseudo-random images with desired stochastic and visual properties. The Variable Structure Random Field (VSRF) model has six parameters which provide a high degree of control over the random field statistics and appearance. In particular, the spatial structure parameter allows for a continuum between highly structured polygon fields and unstructured Gaussian Markov fields. Experimental results show that the VSRF model can accurately characterize the autocorrelation and joint entropy of real-world images, e.g., for parameterization of image processing algorithms. This paper presents a computationally efficient method to construct pseudo-random VSRF images, which are useful as inputs for assessing the simulated performance of image acquisition, processing, and communications systems across a range of images with controlled stochastic and visual properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

INRIA Research Project Proposal mistis Modelling and Inference of Complex and Structured Stochastic Systems

5 Domains of research 10 5.1 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1.1 Learning and classification techniques . . . . . . . . . . . . . . . . . . 11 5.1.2 Taking into account the curse of dimensionality. . . . . . . . . . . . 12 5.2 Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.2.1 Triplet Markov Fields f...

متن کامل

Texture Synthesis via a Non-parametric Markov Random Field

In this paper we present a non-causal non-parametric multiscale Markov random field (MRF) texture model that is capable of synthesising a wide variety of textures. The textures that this model is capable of synthesising vary from the highly structured to the stochastic type and include those found in the Brodatz album of textures. The texture model uses Parzen estimation to estimate the conditi...

متن کامل

Magnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice

In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4),  ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006